Article-detailsAdvances in Industrial Engineering and Management
 Article-details | AIEM

2017(Volume 6)
Vol. 6, No. 2 (2017)
Vol. 6, No. 1 (2017)
2016(Volume 5)
Vol. 5, No. 2 (2016)
Vol. 5, No. 1 (2016)
2015(Volume 4)
Vol. 4, No. 2 (2015)
Vol. 4, No. 1 (2015)
2014(Volume 3)
Vol.3, No.4 ( 2014 )
Vol.3, No.3 ( 2014 )
Vol.3, No.2 ( 2014 )
Vol.3, No.1 ( 2014 )
2013 ( Volume 2 )
Vol.2, No.2 ( 2013 )
Vol.2, No.1 ( 2013 )
2012 ( Volume 1 )
Vol. 1, No.1 ( 2012 )



ISSN:2222-7059 (Print);EISSN: 2222-7067 (Online)
Copyright © 2000- American Scientific Publishers. All Rights Reserved.

Title : Electrochemical, Dielectric Behaviour and in Vitro Antimicrobial Activity of Polystyrene-calcium Phosphate
Author(s) : Tanvir Arfin, Faruq Mohammad
Author affiliation : 1 Department of Chemistry, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli 394350, India
2 Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Corresponding author img Corresponding author at : Corresponding author img  

In continuation to our previous work with polystyrene-calcium phosphate (PS-CaP) composite, we further studied the conductivity behaviour under different electrolytic conditions. In the present report, the membrane potential measurements were conducted at different concentrations that ranges from 0.0001 c (M) 1 of respective salts like BaCl2 and MgCl2 of 2:1 electrolyte solutions at isothermal temperature (250.1°C). The observed membrane potentials of various electrolytes follows the sequencing order of BaCl2 MgCl2, confirming the cation-selective nature of the membrane. This gives an idea that the potential is a measurable parameter and can be used to characterize the charged property of the membrane. The dielectric constant decreased simultaneously with an increased frequency and also the dielectric loss tangent is shown by the complementary result with respect to dielectric constant. It is also signified from the studies that the dielectric loss tangent is directly proportional to the dielectric constant. Further, the PS-CaP material was tested for antibacterial and antifungal activity against various cultures including Streptococcus mutans, Staphylococcus pyogenes, MRSA (gram-positive bacteria), Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli (gram-negative bacteria), and fungi of Candida albicans, Candida krusei, Candida parapsilosis and Candida neroformans. The result of this study concludes that the PS-CaP material has significant antimicrobial activity against all the cultures due to the chelating property and the cationic effect provided by the PS polymer.

Key words:Polystyrene-calcium phosphate; Impedance measurements; Dielectric constant; Antimicrobial activity; Antifungal property

Cite it:
Tanvir Arfin, Faruq Mohammad, Electrochemical, Dielectric Behaviour and in Vitro Antimicrobial Activity of Polystyrene-calcium Phosphate, Advances in Industrial Engineering and Management, Vol.3, No.3, 2014, pp.25-38, doi: 10.7508/AIEM-V3-N3-25-38

Full Text : PDF(size: 944.3 kB, pp.25-38, Download times:456)

DOI : 10.7508/AIEM-V3-N3-25-38

[1] W. den Hollander, P. Patka, C.P. Klein and G.A. Heidendal, 1991. Macroporous calcium phosphate ceramics for bone substitution:a tracer study on biodegradation with 45Ca tracer, Biomaterials, vol. 12, pp. 569–73. DOI: 10.1016/0142-9612(91)90053-D
[2] (a)T. Arfin and Rafiuddin, 2012. Metal ion transport through a polystyrene-based cobalt arsenate membrane: application of irreversible thermodynamics and theory of absolute reaction rates, Desalination, vol. 284, pp. 100-105. DOI: 10.1016/j.desal.2011.08.042
(b) T. Arfin and Rafiuddin, 2010. Thermodynamics of ion conductivity of alkali halides across a polystyrene-based titanium arsenate membrane, Electrochim. Acta, vol. 55, pp. 8628-8631. DOI: 10.1016/j.electacta.2010.07.091
[3] (a) G.S. Gohil, R.K. Nagarale, V.V. Binsu and V.K. Shahi, 2006. Preparation and characterization of monovalent cation selective sulfonated poly (ether ether ketone) and poly (ether sulfone) composite membranes, J. Colloid Interface Sci. vol. 298, pp. 845-853. DOI: 10.1016/j.jcis.2005.12.069
(b) T. Arfin and N. Yadav, 2013. Impedance characteristics and electrical double-layer capacitance of composite polystyrene-cobalt-arsenate membrane, J. Ind. Eng. Chem., vol. 19, pp. 256-262. DOI: 10.1016/j.jiec.2012.08.009
[4] (a) T.J. Chou and A. Tanioka, 1998. Ionic behaviour across charged membranes in methanol water solutions. I: Membrane potential, J. Membr. Sci., vol. 144, pp. 275-284. DOI: 10.1016/S0376-7388(98)00069-6
(b) T. Arfin and F. Mohammad, 2013. DC electrical conductivity of nano-composite polystyrene-titanium-arsenate membrane, J. Ind. Eng. Chem., vol. 19, pp. 2046-2051. DOI: 10.1016/j.jiec.2013.03.019
[5] M.N. Beg, F.A. Siddiqi, A. Husain and B. Islam, 1979. Preparation of cupric palmitate membrane, its characterization and evaluation of thermodynamically effective fixed charge density, Lipids, vol. 14, pp. 682-686. DOI:10.1007/BF02533455
[6] Z.D. Deng and K.A. Mauritz, 1992. Dielectric relaxation studies of acid-conducting short side-chain perfluorosulfonate ionomer membranes, Macromolecules, vol. 25, pp. 2369-2380. DOI: 10.1021/ma00086a016
[7] P.C. Appelbaum and P.A. Hunter, 2000. The fluoroquinolone antibacterials: past, present and future perspectives, Int. J. Antimicrob. Ag., vol. 16, pp. 5-15. DOI: 10.1016/S0924-8579(00)00192-8
[8] (a) S.J. Brickner, D.K. Hutchinson, M.R. Barbachyn, P.R. Manninem, D.A. Ulanowicz, S.A. Garmon, K.C. Grega, S.K. Hendges, D.S. Toops, C.W. Ford and G.E. Zurenko, 1996. Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gran-positive bacterial infections, J. Med. Chem., vol. 39, pp. 673-679. DOI: 10.1021/jm9509556
(b) V.T. Andriole, J. Remington, M. Swartz, M.A. Malden, Current Clinical Topics in Infectious Diseases, Blackwell Sciences, 1998, pp. 18-19. ISBN 0-6320-4402-0
[9] (a) V. Snaz-Nebot, I. Valls, D. Barbero and J. Barbosa, 1997. Acid-base behaviour of quinolones in aqueous acetonitrile mixtures, Acta Chem. Scand., vol. 28, pp. 896-903. DOI:10.1002/chin.199751161
(b) J.A. Vazquez, V. Sanchez, C. Dmuchowski, L.M. Dembry, J.D. Sobel and M.J. Zervos, 1998. Nosocomial acquisition of candida albicans: an epidemiologic study, J. Infect. Dis., vol. 168, pp. 195-201. DOI: 10.1093/infdis/168.1.195
[10] M.A. Pfaller and D.J. Diekema, 2007. Epidemiology of invasive candidiasis: a persistent public health problem, Clin. Microbiol. Rev., vol. 20, pp.133-163. DOI: 10.1128/CMR.00029-06
[11] A.N. Sudjana, C.F. Carson, K.C. Carson, T.V. Riley and K.A. Hammer, 2012. Candida albicans adhesion to human epithelial cells and polystyrene and formation of biofilm is reduced by sub-inhibitory melaleuca alternifolia (tea tree) essential oil, Med. Mycol., vol. 50, pp. 863-870. DOI: 10.3109/13693786.2012.683540
[12] M. Tasaka, N. Aoki, Y. Konda and M. Nagasawa, 1975. Membrane potentials and electrolyte permeation velocities in charged membranes, J. Phys. Chem., vol. 79, pp. 1307-1314. DOI: 10.1021/j100580a017
[13] F.A. Siddiqi, M.N. Beg and P. Prakash, 1979. Studies with model membranes. XXII. Evaluation of thermodynamic parameters and testing of theories of membrane and bi-ionic potential based on nonequilibrium thermodynamics, J. Polym. Sci., vol. 17, pp. 539-550. DOI: 10.1002/pol.1979.170170223
[14] T. Arfin and S. Fatima, 2013. Conductometric studies with polystyrene calcium phosphate membrane, Asian J. Adv. Basic Sci., vol. 2, pp.1-14.
[15] T. Arfin, F. Jabeen and R.J. Kriek, 2011. An electrochemical and theoretical comparison of ionic transport through a polystyrene based titanium-vanadium (1:2) phosphate membrane, Desalination, vol. 274, pp. 206-211. DOI: 10.1016/j.desal.2011.02.014
[16] T. Arfin and Rafiuddin, 2009. Electrochemical properties of titanium arsenate membrane, Electrochim. Acta, vol. 54, pp. 6928-6934. DOI: 10.1016/j.electacta.2009.06.074
[17] (a) T. Arfin and N. Yadav, 2012. Impedance characteristics and electrical double layer capacitance of polystyrene based nickel arsenate membrane, Anal. Bioanal. Electrochem., vol. 4, pp. 135-152.
(b) T. Arfin, R. Bushra and R.J. Kriek, 2013. Ionic conductivity of alkali halides across a polyaniline-zirconium(IV)-arsenate membrane, Anal. Bioanal. Electrochem., vol. 5, pp. 206-221.
[18] (a) T. Arfin and Rafiuddin, 2011. An electrochemical and theoretical comparison of ionic transport through a polystyrene-based cobalt arsenate membrane, Electrochim. Acta, vol. 56, pp. 7476-7483. DOI: 10.1016/j.electacta.2011.06.109
(b) T. Arfin and Rafiuddin, 2009. Transport studies of nickel arsenate membrane, J. Electroanaly. Chem., vol. 636, pp.113-122. DOI: 10.1016/j.jelechem.2009.09.019
[19] T. Arfin, A. Falch and R.J. Kriek, 2012. Evaluation of charge density and the theory for calculating membrane potential for a nano-composite nylon-6,6 nickel phosphate membrane, Phys. Chem. Chem. Phys., vol. 14, pp.16760-16769. DOI: 10.1039/C2CP42683H
[20] (a) R. Cruickshank, J.P. Duguid, B.P. Marmion and R.H.A. Awain, 1995. Medicinal Microbiology, 12th ed., vol.11, Churchill Livingstone, London, pp. 196.
(b) T.J. Mackie, Mackie and McCartney, 1989. Practical Medical Microbiology, 13th ed., Churchill Livingstone, Edinburgh, pp. 696. [21] S.A. Khan, K. Saleem, and Z. Khan, 2007. Synthesis, characterization and in vitro antibacterial activity of new steroidal thiazolo quinoxalines, Eur. J. Med. Chem., vol. 42, pp.103-108. DOI: 10.1016/j.ejmech.2006.07.006
[22] G.S. Gohil, V.K. Shahi and R. Rangarajan, 2004. Comparative studies on electrochemical characterization of homogeneous and heterogeneous type of ion-exchange membrane, J. Membr. Sci., vol. 240, pp. 211-219. DOI: 10.1016/j.memsci.2004.04.022
[23] K. Singh and A.K. Tiwari, 2004. Studies on electrochemical characterization of membranes, Proc. Ind. Natl. Sci. Acad., vol. 70, pp.477-482.
[24] K. Singh, A.K. Tiwari and J.P. Rai, Alumina membrane supported on a polyvinylidene fluoride matrix, Ind. J. Chem., vol. 24, pp.825-827
[25] M.N. Beg and M.A. Matin, 2005. Studies with nickel phosphate membranes: evaluation of charge density and test of recently developed theory of membrane potential, J. Membr. Sci., vol. 196, pp. 201-209. DOI: 10.1016/S0376-7388(01)00582-8
[26] M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, S. Agilan and R. Balasundaraprabhu, 2012. Impedance spectroscopy and dielectric properties of cobalt doped CdS nanoparticles, Powder Technol., vol.217, pp. 1-6. DOI: 10.1016/j.powtec.2011.09.038
[27] A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee and Alimuddin, 2008. Structure and electrical properties of Co0.5CdxFe2.5-xO4 ferrites, J. Alloy Compd., vol. 464, pp.361-369. DOI: 10.1016/j.jallcom.2007.09.126
[28] (a) D.C. Onwudiwe, T. Arfin, C.A. Strydom and R.J. Kriek, 2013. A study of the thermal and AC impedance properties of N-phenyldithiocarbamate complexes of Zn (II), Electrochim. Acta, vol. 109, pp. 809-817. DOI: 10.1016/j.electacta.2013.07.176
(b) D.C. Onwudiwe, T. Arfin, C.A. Strydom and R.J. Kriek, 2013. Synthesis, spectroscopic characterization and behaviour of AC impedance spectroscopy of Cd (II) bis (N-para-methylphenyl dithiocarbamate), Electrochim. Acta, vol. 104, pp. 19-25. DOI: 10.1016/j.electacta.2013.04.081
[29] T. Kar and R.N.P. Choudhary, 1997. Structural dielectric and electrical properties of LiNbMoO6 ceramics, Mater. Lett., vol. 32, pp.109-113. DOI: 10.1016/S0167-577X (97)00014-1
[30] M.E. Orazem and B. Tribollet, 2008. An integrated approach to electrochemical impedance spectroscopy, Electrochim. Acta, vol. 53, pp.7360-7366. DOI: 10.1016/j.electacta.2007.10.075
[31] N.K. Singh, P. Kumar and R. Rai, 2011. Comparative study of structure, dielectric and electrical behaviour of Ba(Fe0.5Nb0.5)O3 ceramics and their solid solutions with BaTiO3, Adv. Mater. Lett., vol. 2, pp. 200-205. DOI: 10.5185/amlett.2010.11178
[32] A.N. Jansen, P.T. Wojcik, P. Agarwal and M.E. Orazem, 1996. Thermally-stimulated deep-level impedance spectroscopy: application to an n-GaAs Schottky diode, J. Electrochem. Soc., vol. 143, pp. 4066-4074. DOI: 10.1149/1.1837337
[33] T. Šalkus, V. Galeckas, J.C. Badot, I.I. Makauz, I.P. Studenyak, A. Selskis, A. Kežionis and J. Banys, Impedance spectroscopy study of Cu6PS5I-As2S3 nanocomposites, Ionics, vol. 19, pp.1387-1391. DOI: 10.1007/s11581-013-0875-4
[34] J.F. Jurado, J.A. Trujillo, B.-E. Mellander and R.A. Vaegas, 2003. Effect of AgBr on the electrical conductivity of -AgI, Solid State Ionics, vol. 156, pp.103-112. DOI: 10.1016/S0167-2738(02)00614-8
[35] A. Chamola, H. Singh and U.C. Naithani, Study of Pb(Zr0.65Ti0.35)O3(PZT(65/35) doing on structural, dielectric and conductivity properties of BaTiO3(BT) ceramics, Adv. Mater. Lett., vol. 2, pp. 148-152. DOI: 10.5185/amlett.2010.11183
[36] E. Berejo, R. Carballo, A. Castiñeiras, R. Dominguez, C. Maiche-Mӧssmer, J. Strӓhle and D.X. Best, 1999. Synthesis, characterization and antifungal activity of group 12 metal complexes of 2-acetylpyridine-4N-ethylthiosemicarbazone (H4EL) and 2-acetylpyridine-N-oxide-4N-ethylthiosemicarbazone (H4ELO) Polyhedron, vol. 18, pp. 3695-3702. DOI: 10.1016/S0277-5387(99)00309-5
[37] Z.H. Chohan, A. Scozzafava and C.T. Supuran, 2003. Zinc complexes of benzothiazole-derived Schiff bases with antibacterial activity, J. Enzyme Inhib. Med. Chem., vol. 18, pp. 259-263. DOI: 10.1080/1475636031000071817
[38] F. Mohammad andT. Arfin, 2013. Cytotoxic effects of polystyrene-titanium-arsenate composite in cultured H9c2 cardiomyoblasts, Bull. Environ. Contam. Tox., vol. 91, pp. 689-696. DOI:10.1007/s00128-013-1131-3

Terms and Conditions   Privacy Policy  Copyright©2000- 2014 American Scientific Publishers. All Rights Reserved.