Article-detailsAdvances in Industrial Engineering and Management
 Article-details | AIEM
 


2017(Volume 6)
Vol. 6, No. 2 (2017)
Vol. 6, No. 1 (2017)
2016(Volume 5)
Vol. 5, No. 2 (2016)
Vol. 5, No. 1 (2016)
2015(Volume 4)
Vol. 4, No. 2 (2015)
Vol. 4, No. 1 (2015)
2014(Volume 3)
Vol.3, No.4 ( 2014 )
Vol.3, No.3 ( 2014 )
Vol.3, No.2 ( 2014 )
Vol.3, No.1 ( 2014 )
2013 ( Volume 2 )
Vol.2, No.2 ( 2013 )
Vol.2, No.1 ( 2013 )
2012 ( Volume 1 )
Vol. 1, No.1 ( 2012 )

 

 


ADVANCES IN INDUSTRIAL ENGINEERING AND MANAGEMENT
ISSN:2222-7059 (Print);EISSN: 2222-7067 (Online)
Copyright © 2000- American Scientific Publishers. All Rights Reserved.


Title : Title Synthesis, Influence of Electrolyte Solutions on Impedance Properties and In-vitro Antibacterial Studies of Organic-inorganic Composite Membrane
Author(s) : Tanvir Arfin, Simin Fatma
Author affiliation : 1 Department of Chemistry, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-394350, India
2 Department of Biotechnology, Tilka Manjhi Bhagalpur University, Bhagalpur,812007, India
Corresponding author img Corresponding author at : Corresponding author img  

Abstract:
As stated in the previous work of ours in composite polystyrene-titatinum arsenate (PS-Ti-As), both of us studied the impedance behaviour of the Ps-Ti-As composite membrane for distinct electrolytic conditions arranged for an experiment. In the present prescribed report, the capacitance and resistance measurements were conducted by enhancing contrary concentrations that is 0.0001 c (M) 1 of BaCl2 as well as CaCl2 of 1:1 electrolyte solutions at isothermal process where temperature remains constant basically at 250.1°C. For calculating the membrane resistance (RM), capacitance (CM), reactance (Xx), the measurement of capacitance and resistance were used again and were also formulated to create the impedance (Z) value, as such impedance is an essential characteristic for controlling the membrane phenomena. The dielectric constant also increased with an increase of temperature at 1 kHz oscillatory frequency. According to the simple equivalent electrical circuit model, the data of impedance was evaluated which was found following the theoretical prediction which ranges high frequency. At the membrane-electrolyte interface, the electrical double layer was influenced systematically. The important role played on the geometric capacitor by the charge of polarization forming a diffused double layer which later affected the overall membrane capacitance. The motion of ions through it, which was marked on double-layer capacitance was affected due to the applied frequencies across the membrane. Finally, the composite material was also tested for its antibacterial activity against numerously bacterial cultures that includes Escherichia coli, Bacillus thuringienisis and Pseudomonas aeruginosa. The result of these studies also signifies the activity of the composite as compared with a well-known antibiotic that is tetracycline and therefore, can be specifically used as an antibacterial agent.

Key words:Polystyrene-titanium-arsenate (PS-Ti-As) composite; capacitive reactance; capacitance; impedance; interfacial double layer capacitance; antibacterial activity

Cite it:
Tanvir Arfin, Simin Fatma, Title Synthesis, Title Synthesis, Influence of Electrolyte Solutions on Impedance Properties and In-vitro Antibacterial Studies of Organic-inorganic Composite Membrane, Advances in Industrial Engineering and Management, Vol.3, No.2, 2014, pp.19-30, doi: 10.7508/AIEM-V3-N2-19-30

Full Text : PDF(size: 4.47 MB, pp.19-30, Download times:340)

DOI : 10.7508/AIEM-V3-N2-19-30

References:
[1] (a) T. Arfin, A. Falch and R.J. Kriek, 2012. Evaluation of charge density and the theory for calculating membrane potential for a nano-composite nylon-6,6 nickel phosphate membrane; Phys. Chem. Chem. Phys., vol. 14, pp. 16760 – 16769.DOI: 10.1039/C2CP42683H
(b) T. Arfin and Rafiuddin, 2012. Metal ion transport through a polystyrene-based cobalt arsenate membrane: application of irreversible thermodynamics and theory of absolute reaction rates, Desalination, vol. 284, pp. 100 – 105. DOI: 10.1016/j.desal.2011.08.042
(c) T. Arfin and Rafiuddin, 2011. An electrochemical and theoretical comparison of ionic transport through a polystyrene-based cobalt arsenate membrane, Electrochim. Acta, vol. 56, pp. 7476 – 7483. DOI: 10.1016/j.electacta.2011.06.109
[2] (a)T. Arfin and Rafiuddin, 2009. Transport studies of nickel arsenate membrane, J. Electroanal. Chem., vol. 636, pp. 113- 122. DOI: 10.1016/j.jelechem.2009.09.019
(b)T. Arfin, R. Bushra and R.J. Kriek, 2013. Ionic conductivity of alkali halides across a polyaniline-zirconium (IV) –arsenate membrane, Anal. Bioanal. Electrochem., vol. 5, pp. 206 – 221.
[3] S.A. Nabi, R. Bushra and M. Shahadat, 2012. Removal of toxic metal ions by using composite cation-exchange material, J. Appl. Polym. Sci., vol. 125, pp. 3438 – 3446. DOI: 10.1002/app.36325
[4] D.C. Onwudiwe, T. Arfin, C.A. Strydom and R.J. Kriek, 2013. A study of the thermal and AC impedance properties of N-phenyldithiocarbamate complexes of Zn (II), Electrochim. Acta, vol. 109, pp. 809 – 817. DOI: 10.1016/j.electacta.2013.07.176
[5] D.C. Onwudiwe, T. Arfin, C.A. Strydom and R.J. Kriek, 2013. Synthesis, spectroscopic characterization and behaviour of AC impedance spectroscopy of Cd(II) bis (N-para-methylphenyl dithiocarbamate), Electrochim. Acta, vol. 104, pp. 19- 25. DOI: 10.1016/j.electacta.2013.04.081
[6] D.C. Onwudiwe, T. Arfin and C.A. Strydom, 2014. Synthesis, characterization, and dielectric properties of N- butyl aniline capped CdS nanoparticles, Electrochim. Acta, vol. 116, pp. 217 – 223. DOI: 10.1016/j.electacta.2013.11.046
[7] M. Sluyters-Rehbach, 1994. Impedances of electrochemical systems: Part I: Cells with metal electrodes and liquid solutions (IUPAC Recommendations 1994), Pure and Appl. Chem., vol. 66, pp. 1831- 1891. DOI: 10.1351/pac199466091831
[8] R.A. Day and A.L. Underwood, 1991. Quantitative Analysis, Prentice-Hall, New Jersey, USA.
[9] S.A. Nabi, M. Shahadat, R. Bushra, M. Oves and F. Ahmed, 2011. Synthesis and characterization of polyaniline Zr(IV) sulphosalicylate composite and its applications (1) electrical conductivity, and (2) antimicrobial activity studies, Chem. Eng. J., vol. 173, pp. 706- 714. DOI:10.1016/j.cej.2011.07.081
[10] I. Bhat and S. Tabassum, 2009. Synthesis of new piperazine derived Cu(II)/Zn(II) metal complexes, their DNA binding studies, electrochemistry and anti-microbial activity:Validation for specific recognition of Zn(II) comples to DNA helix by interaction, Spectrochim. Acta Part A, vol. 72, pp. 1026- 1033. DOI: 10.1016/j.saa.2008.12.037
[11] T. Arfin and Rafiuddin, 2009. Electrochemical properties of titanium arsenate membrane, Electrochim. Acta, vol. 54, pp. 6928 – 6934. DOI: 10.1016/j.electacta.2009.06.074
[12] (a) T. Arfin and Rafiuddin, 2010. Thermodynamics of ion conductivity of alkali halides across a polystyrene-based titanium arsenate membrane, Electrochim. Acta, vol. 55, pp. 8628 – 8631. DOI: 10.1016/j.electacta.2010.07.091
(b)T. Arfin and F. Mohammad, 2013. DC electrical conductivity of nano-composite polystyrene-titanium-arsenate membrane, J. Ind. Eng. Chem., vol. 19, pp. 2046 – 2051. DOI: 10.1016/j.jiec.2013.03.019
(c) F. Mohammad and T. Arfin, 2013. Cytotoxic effects of polystyrene-titanium-arsenate composite in cultured H9c2 Cardiomyoblasts, Bull Environ Contam Toxicol., vol. 91, pp. 689- 696. DOI: 10.1007/s00128-013-1131-3
[13] T. Arfin, F. Jabeen and R.J. Kriek, 2011. An electrochemical and theoretical comparison of ionic transport through a polystyrene based titanium-vanadium (1:2) phosphate membrane, Desalination, vol. 274, pp. 206- 211. DOI: 10.1016/j.desal.2011.02.014
[14] R.Y. Stanier, E.A. Adelberg and J.L. Ingraham, 1985. Microbial growth in General Microbilogy, MacMillan Publication, London, UK.
[15] R. de Lara and J. Benavente, 2007. Electrokinetic and surface chemical characterizations of an irradiated microfiltration polysulfone membrane: comparison of two irradiation doses, J. Colloid Interface Sci., vol. 310, pp. 519 – 528. DOI: 10.1016/j.jcis.2007.01.079
[16] S.M. Nair, A.L. Yahya and Rafiuddin, 1996. A. Ahmad, Ionic conductivity and dielectric constant of Tl4CdI6, Solid State Ionics, vol. 86-88, pp. 137 – 139. DOI: 10.1016/0167-2738(96)00109-9
[17] M. Hassan and Rafiuddin, 2008. Ionic conductivity and phase stabilization in Cu- and Tl-substituted CsAg2I3, Physica B Condens Matter, vol. 403, pp. 2097 – 2102. DOI: 10.1016/j.physb.2007.11.019
[18] T. Arfin and N. Yadav, 2012. Impedance characteristics and electrical double layer capacitance of polystyrene based nickel arsenate membrane, Anal. Bioanal. Electrochem., vol. 4, pp. 135- 152.
[19] Th. Wandlowski, V. Mareček, K. Holub and Z. Samec, 1995. The double layer at the interface between two immiscible electrolyte solutions- IV. Solvent effects, Electrochim. Acta, vol. 40, pp. 2887 – 2895. DOI: 10.1016/0013-4686(95)00218-4
[20] R.G. Linsford, 1987. Electrochemical Science and Technology of Polymers 1, Elsevier, New York, USA.
[21] R. Kötz and M. Carlen, 2000. Principles and applications of electrochemical capacitors, Electrochim. Acta, vol. 45, pp. 2483- 2498. DOI: 10.1016/S0013-4686(00)00354-6
[22] (a) P. Huguet, T. Kivo, O. Nogera, P. Sistat and V. Nikonenko, 2005. The crossed interdiffusion of sodium nitrate and sulphate through an anion exchange membrane, as studied by Raman spectroscopy, New J. Chem., vol. 29, pp. 955 – 961. DOI: 10.1039/B501257K
(b) C. Larchet, S. Nouri, B. Auclair, L. Dammak and V. Nikonenko, 2008. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection, Adv. Colloid Interface Sci., vol. 139, pp. 45- 61. DOI: 10.1016/j.cis.2008.01.007
[23] A.J. Bard, and L.R. Faulkner, 2001. Electrochemical Methods, Second ed., John Wiley & Sons, Inc., New York, USA.
[24] (a) B. Zaltzman and I. Rubinstein, 2007. Electro-osmotic slip and electroconvective instability, J. Fluid Mech., vol. 579, pp.173- 226. DOI: 10.1017/S0022112007004880
(b) M.A.-Kh. Urtenov, E.V. Kirillova, N.M. Seidov and V.V. Nikonenko, 2007. Decoupling of the Nernst-Planck and poisson equations. Application to a membrane system at overlimiting currents, J. Phys. Chem. B, vol. 111, pp.14208- 14222. DOI: 10.1021/jp073103d
[25] N. Lakshminarayanaiah and A.M. Shanes, 1965. Electrochemical properties of thin parlodion membranes, J. Appl. Polym. Sci., vol. 9, pp. 689- 706. DOI: 10.1002/app.1965.070090227
[26] A. Tataroğlu and S. Altindal, 2008. Analysis of electrical characteristics of Au/SiO2/n-Si (MOS) capacitors using the high-low frequency capacitance and conductance methods, Microelectron. Eng., vol. 85, pp. 2256- 2260. DOI: 10.1016/j.mee.2008.07.001
[27] T. Arfin and N. Yadav, 2013. Impedance characteristics and electrical double-layer capacitance of composite polystyrene-cobalt-arsenate membrane, J. Ind. Eng. Chem., vol. 19, pp. 256 – 262. DOI: 10.1016/j.jiec.2012.08.009
[28] A. Türüt and M. Sağlam, 1992. Determination of the density of Si-metal interface states and excess capacitance caused by them, Physica B Condens. Matter, vol.179, pp. 285- 294. DOI: 10.1016/0921-4526(92)90628-6
[29] B. Malmgren-Hansen, T.S. Sorensen, J.B. Jensen and M. Hennenberg, 1989. Electric impedance of cellulose acetate membranes and a composite membrane at different salt concentrations, J Colloid Interface Sci., vol. 130, pp. 359- 385. DOI: 10.1016/0021-9797(89)90115-X
[30] L. Siinor, C. Siimenson, V. Ivaništšev, K. Lust and E. Lust, 2012. Influence of cation chemical composition and structure on the double layer capacitance for Bi(1 1 1) room temperature ionic liquid interface, J. Electroanal.Chem. , vol. 668, pp. 30- 36. DOI:10.1016/j.jelechem.2012.01.005
[31] M.A. Vorotyntsev, 2002. Impedance of thin films with two mobile charge carriers. Interfacial exchange of both species with adjacent media. Effect of the double layer charges, Electrochim. Acta, vol. 47, pp. 2071- 2079. DOI: 10.1016/S0013-4686(02)00076-2
[32] B.E. Conway, 1990. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/ Plenum Publishers, New York, USA.
[33] (a) K. Asaka, 1990. Dielectric properties of cellulose acetate reverse osmosis membranes in aqueous salt solutions, J. Membr. Sci., vol. 50, pp.71- 84. DOI: 10.1016/S0376-7388(00)80887-X
(b) J. Benavente, J.R. Ramos-Barrado, S. Bruque and M. Matinez, 1994. Determination of some electrical parameters for UO2 (O3PC6H5) films deposited on a porous support, J. Chem. Soc. Faraday Trans., vol. 90, pp. 3103-3107. DOI: 10.1039/FT9949003103
[34] (a) P. Sistat, A. Kozmai, N. pismenskaya, C. Larchet, G. Pourcelly, and V. Nikonenko, 2008. Low-frequency impedance of an ion-exchange membrane system, Electrochim. Acta, vol. 53, pp. 6380- 6390. DOI: 10.1016/j.electacta.2008.04.041
(b)V. Freger, 2005. Diffusion impedance and equivalent circuit of a multilayer film, Electrochem. Commun., vol.7, pp. 957- 961. DOI: 10.1016/j.elecom.2005.06.020
[35] J.-S. Park, J.-H. Choi and K.-H. Moon, 2006. An approach to fouling characterization of an ion-exchange membrane using current-voltage relation and electrical impedance spectroscopy, J. Colloid Interface Sci., vol. 294, pp. 129- 138. DOI: 10.1016/j.jcis.2005.07.016
[36] R.D. Armstrong and W.I. Archer, 1978. The double layer capacity of the Au/Na- β-alumina interface-variation with temperature, J. Electroanal. Chem. Vol. 87, pp. 221- 224. DOI: 10.1016/S0022-0728(78)80303-9
[37] M.V. Fedorov and A.A. Kornyshev, 2008. Towards understanding the structure and capacitance of electrical double layer in ionic liquids, Electrochim. Acta, vol. 53, pp. 6835- 6840. DOI: 10.1016/j.electacta.2008.02.065
[38] W. Schmickler and E. Santos, 2010. Interfacial Electrochemistry, 2nd ed., Springer, Berlin.
[39] P. Läuger, W. Lesslauer, E. Marti and J. Richter, 1967. Electrical properties of bimolecular phospholipid membranes, Biochim. Biophys. Acta, vol., 135, pp. 20- 32. DOI: 10.1016/0005-2736(67)90004-1
[40] E.E. Parsonage, 1996. Double Layer Capacitance of Poly(Acrylic Acid) at Metal/Water Interfaces, J Colloid Interface Sci., vol. 177, pp. 353- 358. DOI: 10.1006/jcis.1996.0043
[41] N. Islam. N.A. Bulla and S. Islam, 2006. Electrical double layer at the peritoneal membrane/electrolyte interface, J. Memb. Sci., vol. 282, pp. 89- 95. DOI: 10.1016/j.memsci.2006.05.007
[42] A. Rehman, M.I. Choudhary and W.J. Thomsen, 2001. Bioassay Techniques for Drug Development; Harwood Academic Publishers, Amsterdam, Netherlands.
[43] N. Raman, A. Kulandaisamy, A. Shunmugasundaram and K. Jeyasubramanian, 2001. Synthesis, spectral, redox and antimicrobial activities of Schiff base complexes derived from 1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one and acetoacetanilide, Tran. Met. Chem., vol. 26, pp. 131- 135. DOI: 10.1023/A:1007100815918
[44] (a) H. Arslan, N. Duran, G. Borekci, C.K. Ozer and C. Akbay, 2009. Antimicrobial activity of some thiourea derivatives and their nickel and copper complexes, Molecules, vol. 14, pp. 519 – 527. DOI: 10.3390/molecules14010519
(b) G.P. Ellis, D.K. Luscombe and A.W. Oxford, 1998. Progress in Medicinal chemistry; vol. 35, Elsevier, Amsterdam .
[45] M.M.A. Khan and Rafiuddin, 2012. Synthesis, electrochemical characterization, antibacterial study and evaluation of fixed charge density of polystyrene based calcium-strontinum phosphate composite membrane, Desalination, vol. 284, pp. 200- 206. DOI: 10.1016/j.desal.2011.08.059

Terms and Conditions   Privacy Policy  Copyright©2000- 2014 American Scientific Publishers. All Rights Reserved.